首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   68篇
  国内免费   92篇
化学   474篇
晶体学   9篇
力学   154篇
综合类   4篇
数学   11篇
物理学   151篇
  2023年   9篇
  2022年   20篇
  2021年   33篇
  2020年   38篇
  2019年   31篇
  2018年   22篇
  2017年   25篇
  2016年   43篇
  2015年   32篇
  2014年   34篇
  2013年   87篇
  2012年   33篇
  2011年   36篇
  2010年   30篇
  2009年   28篇
  2008年   44篇
  2007年   29篇
  2006年   31篇
  2005年   29篇
  2004年   32篇
  2003年   23篇
  2002年   23篇
  2001年   13篇
  2000年   14篇
  1999年   8篇
  1998年   9篇
  1997年   5篇
  1996年   8篇
  1995年   11篇
  1994年   3篇
  1993年   5篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有803条查询结果,搜索用时 15 毫秒
61.
62.
Foam fractionation isone of the low operating-cost techniques for removing proteins from a dilute solution. The initial bulk solution pH and air superficial velocity play an importantrole in the foam-fractionation process. Denaturation of proteins (enzymes) can occur, however, during the foamfractionation process from the shear forces resulting from bursting air bubbles. At the extreme bulk solution pHs (lower than 3.0 and higher than 10.0), the en zymatic activity of cellulase in the foamate phase drops significantly. Within these two pH boundsan increase in the air superficial velocity, Vo, and a decrease in the bulk solution pH leads to a decrease in the separation ratio (SR), defined as theratio of the protein concentration in the foamate to the protein concentration in the residue. On the other hand, an increase in Vo provides a higher foamate-protein recovery. The process efficiency is defined as the product of foamate-protein recovery times the SR times the cellulase activity. The optimal operating condition of the cellulase foamfractionation process is taken into account at the maximum value of the processefficiency. In this study, that optimal condition is atan air superficial velocity of 32 cm/min and a bulk-solution pH of 10.0. At this condition, the recovered foamate is about 80% of the original protein mass, the SR is about 12, and the en zymatic activity is about 60% of the original cellulase activity.  相似文献   
63.
本文以氧化石墨烯包覆泡沫镍电极(GO@NF)作为基底,采用水热法在GO@NF基底上原位生长CoO纳米花,同时GO在水热过程中被同步热还原为还原氧化石墨烯(RGO),从而一步制得还原氧化石墨烯包覆泡沫镍负载CoO纳米花电极(CoO/RGO@NF)。使用XRD和SEM对CoO/RGO@NF电极进行表征,发现CoO纳米花均匀生长在泡沫镍三维网络结构上,CoO纳米花为大量针状纳米棒围绕一个中心而成的花状结构,纳米棒的长度约为10 ~ 15 μm,直径约为100 ~ 200 nm。使用循环伏安和线性扫描法测试了CoO/RGO@NF电极电催化CO2的还原性能,在-0.76 V(vs. SHE)电位下,CoO/RGO@NF电极电催化CO2还原的电流效率达到70.9%,产甲酸法拉第效率达到65.2%,甲酸产率为59.8 μmol·h-1·cm-2,且电极可持续稳定电催化还原CO2 4 h,表明CoO/RGO@NF电极对CO2电还原有着优良的催化活性、选择性和稳定性。  相似文献   
64.
应用泡沫金属子弹撞击加载的方式研究了固支泡沫铝夹芯梁和等质量实体梁的塑性动力响应。 采用激光测速装置和位移传感器测量了泡沫子弹的撞击速度和后面板中心点的位移-时间曲线,研究了加载 冲量、面板厚度和芯层厚度对夹芯梁抗冲击性能的影响。给出了泡沫铝夹芯梁的变形与失效模式,实验结果 表明结构响应对夹芯结构配置比较敏感,后面板中心点的残余变形与加载冲量、面板厚度呈线性关系。与等 质量实体梁的比较表明,泡沫铝夹芯梁具有更好的抗冲击能力。实验结果对多孔金属夹芯结构的优化设计具 有一定的参考价值。  相似文献   
65.
以水为发泡剂,普通玉米淀粉为原料,采用双螺杆挤出机制备淀粉泡沫材料,研究了发泡剂用量及聚乙烯醇的加入量对泡沫材料结构与性能的影响。 用扫描电子显微镜观察了泡沫材料截面的形态,用万能材料试验机测试了泡沫材料的力学性能。 结果表明,水的质量分数为8%时淀粉泡沫径向膨胀率和发泡倍率最高,分别为22倍和17.6倍,压缩模量最高(4.07 MPa)。 加入质量分数10%的聚乙烯醇(PVA)使淀粉泡沫的孔径变大至1.29 mm,壁厚增加至82.43 μm,同时压缩模量增加至9.70 MPa。  相似文献   
66.
陈会明  程艳  陈伟  于文莲  李晞  王琤 《色谱》2010,28(2):185-189
建立了一种高效液相色谱-串联质谱(HPLC-MS/MS)测定泡沫灭火材料、洗涤剂以及织物整理剂中全氟辛烷磺酸及其盐(PFOS)的方法。对应产品中的PFOS用水超声提取后,经固相萃取柱淋洗萃取,萃取液以乙腈-10 mmol/L乙酸铵溶液(80:20, v/v)为流动相进行HPLC分离,在负离子模式和多级反应监测(MRM)方式下进行测定。用两个子离子的相对丰度定性,外标法定量。PFOS的测定在0.002~0.1 mg/L范围内线性关系良好(r2=0.998);泡沫灭火材料、洗涤剂以及织物整理剂中PFOS的加标回收率分别为93.4%~103%, 93.2%~102%和91.8%~102%,精密度(以相对标准偏差(RSD)计)分别为0.48%~3.52%, 0.78%~1.79%和0.47%~3.47%;方法的检出限均为2 mg/kg(0.0002%)(信噪比(S/N)≥10),满足欧盟法规对泡沫灭火材料、洗涤剂以及织物整理剂中PFOS的限量检测要求。该方法准确度和灵敏度高,前处理简单,可用于泡沫灭火材料、洗涤剂以及织物整理剂中PFOS的检测。  相似文献   
67.
泡沫混凝土发泡剂的发泡性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高混凝土发泡剂性能,分别选用月桂酰基肌氨酸钠(LS-95)、甲基葡萄糖苷聚氧乙烯(120)醚双油酸酯(DOE-120)和丙烯酸交联树脂(340)对常用发泡剂十二烷基苯磺酸钠(LAS)进行复配研究.通过罗氏泡沫仪的起泡高度和消泡半衰期表征发泡剂泡沫稳定性,并对产生的结果进行解释.实验结果表明,在适当条件下,3种复配添加剂都能在一定程度上改善十二烷基苯磺酸钠的泡沫性能,其中0.7% LAS加入25%(与LAS质量比)的DOE-120和10%(与LAS质量比)的340所组成的三组分复合体系,泡沫性能优异.  相似文献   
68.
Herein, a simple in situ charge/discharge activation strategy is proposed to synthesize Fe(OH)3 film on Fe foam as an efficient anode of supercapacitors. The physical characteristics of electrodes are characterized and the electrochemical energy storage performances are investigated. Importantly, it is demonstrated the as‐synthesized Fe(OH)3@Fe foam electrode adopted a novel Fe3+/Fe0 redox reaction mechanism for energy storage in alkaline electrolytes. Compared with previously reported Fe3+/Fe2+ mechanisms, the Fe3+/Fe0 redox couple shows a more promising application value (e.g., higher theoretical‐specific capacitance, excellent conductivity of its reduction state). As for supercapacitor anodes, the electrode achieves high areal capacitance of 5.55–3.94 F cm−2 at a current range of 20–200 mA cm−2 and shows good stability for high‐rate and long‐term cycling. The assembled single supercapacitor device gives a high energy density of 11.64–7.43 Wh m−2 at a power density of 157–1461 W m−2. More importantly, the as‐adopted in situ activation strategy may also have potential value for synthesizing other transition metal oxide‐based products.  相似文献   
69.
70.
In this present study, the forced convection heat transfer from aluminum foam heat sinks with 10, 20, 40 PPI pore density placed in a discrete form in a partially open cavity were experimentally investigated. Air was used as working fluid. The uniform heat flux was applied to 3 × 3 array of foam heat sinks horizontally mounted in the cavity. The experimental studies were performed for the 3363–9743 range of Reynolds number and the 2.7 x 106 and 7.5 x 106 range of modified Grashof number. The effects of the Reynolds number, the modified Grashof number and the pore density of foam heat sink on the heat transfer were investigated. The results obtained were compared with the results obtained without foam heat sink cases. In addition, the most heated elements within the cavity were identified and solution proposals were presented. In addition, the most heated elements within the cavity were identified and solution proposals were presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号